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Abstract

Maximum likelihood fits to data can be performed using binned data and unbinned

data. The likelihood fits in either case result in only the fitted quantities but not

the goodness of fit. With binned data, one can obtain a measure of the goodness

of fit by using the χ2 method, after the maximum likelihood fitting is performed.

With unbinned data, currently, the fitted parameters are obtained but no measure of

goodness of fit is available. This remains, to date, an unsolved problem in statistics.

By considering the transformation properties of likelihood functions with respect

to change of variable, we conclude that the likelihood ratio of the theoretically

predicted probability density to that of the data density is invariant under change

of variable and provides the goodness of fit. We show how to apply this likelihood

ratio for binned as well as unbinned likelihoods and show that even the χ2 test

is a special case of this general theory. In order to calculate errors in the fitted

quantities, we use Bayes’ theorem which then yields the surprising result that the

quantity generally considered the Bayesian prior is an uninteresting constant and

the resulting statistics is consistent with frequentist ideas.
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1 Introduction

In particle physics as well as other branches of science, fitting theoretical mod-

els to data is a crucial end stage to the performance of experiments. Minimizing

the χ2 between theory and experiment is perhaps the most commonly used

form of fitting, with data binned in histograms. Such fits yield not only the

fitted parameters and errors on the fitted parameters but also a measure of

the goodness of fit. Another common fitting method is the maximum likeli-

hood method which can be performed on binned and unbinned data to obtain

the best values of theoretical parameters. In the case of unbinned likelihood

fitting, there is currently no measure of the goodness of fit. In this paper, we

propose a solution to the problem, which by its nature works generally for

both binned and unbinned likelihood fits. A general theory of goodness of fit

in likelihood fits results.

In what follows, we will denote by the vector s, the theoretical parameters

(s for “signal”) and the vector c, the experimentally measured quantities or

“configurations”. For simplicity, we will illustrate the method where both s

and c are one dimensional, though either or both can be multi-dimensional in

practice. We thus define the theoretical model by the conditional probability

density P (c|s), defined as the probability of observing c given a value of s.

The theoretical probability function obeys the normalization condition

∫
P (c|s)dc = 1 (1)

Then an unbinned maximum likelihood fit to data is obtained by maximizing
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the likelihood [1],

L =
i=n∏
i=1

P (ci|s) (2)

where the likelihood is evaluated at the n observed data points ci, i = 1, n.

Such a fit will determine the maximum likelihood value s∗ of the theoretical

parameters, but will not tell us how good the fit is.

1.1 To show that L cannot be used as a goodness of fit variable

The goodness of fit variable must be invariant under a change of variable

c → c′. The value of the likelihood L at the maximum likelihood point does

not furnish a goodness of fit, since the likelihood is not invariant under change

of variable. This can be seen by observing that one can transform the variable

set c to a variable set c′ such that P (c′|s∗) is uniformly distributed between 0

and 1. In one dimension, this is trivially done by the transformation function

c′(c) such that

c′(c) =

c∫
c1

P (t|s∗)dt (3)

The variable c ranges from c1 to c2 and the probability function P (c|s∗) nor-

malizes to unity in this range. This implies that c′ ranges from 0 to 1. Such a

transformation is known as a hypercube transformation, in multi-dimensions.

The transformed probability distribution in the variable c′ is unity in this

interval as can be seen by examining the Jacobian of the transformation |∂c′

∂c
|

|∂c′

∂c
| = P (c|s∗) (4)

P (c′|s∗) = P (c|s∗)| ∂c

∂c′
| = 1 (5)
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Other datasets will yield different values of likelihood in the variable space

c when the likelihood is computed with the original function P (c|s∗). How-

ever, in hypercube space, the value of the likelihood is unity regardless of the

dataset c′i, i = 1, n, thus the likelihood L cannot furnish a goodness of fit by

itself, since neither the likelihood, nor ratios of likelihoods computed using

the same distribution P (c|s∗) is invariant under variable transformations. The

fundamental reason for this non-invariance is that only a single distribution,

namely, P (c|s∗) is being used to compute the goodness of fit.

To illustrate further, we use a concrete example of fitting a dataset using the

maximum likelihood method as shown in Figure 1(a). The fitting is done in

the range c1 < c < c2, where c1 = 1.0 and c2 = 5.0. The fitting function is

P (c|s) =
exp(−c/s)

s(exp(−c1/s) − exp(−c2/s))
(6)

which normalizes to unity in the range c1 < c < c2. The fitted dataset is shown

as a full histogram. The dashed histogram shows a dataset that is a poor fit

to the data and will produce a smaller value of L when fitted as a function of

c. Figure 1(b) shows the same data in the hypercube space where the fitted

function is flat as per the transformation given in equation 3. Both the datasets

will produce a value of unity for L in this space implying an equally good fit

in either case, which is obviously false. This clearly demonstrates that the

likelihood by itself cannot provide a goodness of fit variable.
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Fig. 1. (a) shows the fitting in the dataset space. The curve shows the fitted function.

Superimposed is the fitted data, (full histogram, normalized to unity). The dashed

histogram shows the different dataset which obviously does not fit to the fitted

curve. (b) The same plot in hyperspace. the fitted function is flat by construction.

Both the fitted data set (full histogram) and the dashed histogram will have the

same value of likelihood L in this space which implies that L cannot be used as a

goodness of fit variable.

2 Likelihood ratios

2.1 The concept of “data likelihood” derived from the pdf of the data

It is interesting to note that while using χ2 as the goodness of fit technique for

binned histograms, we use two distribution functions, namely the theoretical

curve and the data. By binning the data, we are in effect estimating the

probability density function of the data as the second distribution, in addition

to the theoretical distribution specified by the theoretical curve. In likelihood

language we define the probability density function (pdf) of the data as

P data(c) = lim
n→∞

1

n

dn

dc
(7)
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which obeys the normalization condition

∫
P data(c)dc = 1 (8)

When one is using binned likelihoods, the pdf of the data would be estimated

by binning the events in a histogram and normalizing the sum of contents of

all bins to unity. In the unbinned case, we will describe below a technique [2]

on estimating P data(c) using Probability Density Estimators (PDE).

We can now define a likelihood ratio LR such that

LR =

∏i=n
i=1 P (ci|s)∏i=n

i=1 P data(ci)
≡ P (�cn|s)

P data(�cn)
(9)

where we have used the notation �cn to denote the dataset ci, i = 1, n.

Since the n events ci, i = 1, n are independent, the probability of obtaining

the dataset �cn is given by

P data(�cn) =
i=n∏
i=1

P data(ci) (10)

The quantity P data(�cn) we name the “data likelihood” of the dataset �cn and

the quantity P (�cn|s) as the “theory likelihood” of the dataset �cn. We note

that the “data likelihood” P data(�cn) may also be thought of as the probability

density of of the“ n − object” �cn which obeys the normalization condition

∫
P data(�cn) d�cn = 1 (11)

Let us now note that LR is invariant under a general variable transformation

(not restricted to hypercube transformation) c → c′, since
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P (c′|s) = | ∂c

∂c′
|P (c|s) (12)

P data(c′) = | ∂c

∂c′
|P data(c) (13)

L′
R = LR (14)

and the Jacobian of the transformation | ∂c
∂c′ | cancels in the numerator and

denominator in the ratio. This is an extremely important property of the

likelihood ratio LR that qualifies it to be a goodness of fit variable. Since the

denominator P data(�cn) is independent of the theoretical parameters s, both

the likelihood ratio and the likelihood maximize at the same point s∗. The

likelihood ratios for two different data sets �cm and �cn can be combined by

multiplication as per

LR
m+n = LR

m × LR
n (15)

This rule follows from the definition of LR in equation 9. In practice, we will

use the negative log-likelihood ratio NLLR = −logeLR as the goodness of

fit variable and minimize it. The multiplication rule of equation 15 results

in an addition rule for NLLR. The problem of finding the distribution of

NLLR for a good fit then reduces to finding the distribution of NLLR in

hyper-cube space for a variable that is uniformly distributed between zero

and one, as in Figure 1(b). This is because NLLR is invariant under the

transformation of variable. So all goodness of fit problems using likelihood

ratios can be reduced to finding the distribution of NLLR for a variable that

is uniformly distributed in hypercube space.
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2.2 Historical use of Likelihood Ratios

The Neyman-Pearson lemma [3] states that if one is trying to choose between

two hypotheses H0 and H1, then the cut on the likelihood ratio

LR =
P (�cn|H0)

P (�cn|H1)
> ε (16)

will have the optimum power in differentiating between the hypotheses H0

and H1, where ε is a constant adjusted to obtain the desired purity in favor

of hypothesis H0. Notice that this likelihood ratio is between the likelihood

computed for two different hypotheses H0 and H1. Our likelihood ratio differs

fundamentally from this in that the denominator we use P ( �Cn) is the “data

likelihood” that is computed from the distribution of the data and is not tied

to any hypothesis as such.

3 Normalizing the theoretical curve to the data

The method of maximum likelihood fits the shape of the theoretical distribu-

tion to the data distribution. The theoretical model obeys the normalization

condition in equation 1 and the likelihood is evaluated at the number of ob-

served data events n. There is no explicit mention of the theoretically expected

number of events, which we denote by nt. Later we will show how to incor-

porate a goodness of fit in the absolute normalization by making use of the

binomial distribution and its limiting cases the Poisson and the normal distri-

butions. We will begin by obtaining goodness of fit formulae for the case where

we bin the data and fit the theoretical shape to the experimental distribution.
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4 Binned Goodness of Fit

When one bins data in histograms and fits the theory shape to the data, one

can fit by using either maximum likelihood or by minimizing χ2. In either

case, the goodness of fit is usually evaluated using χ2. We now illustrate how

the likelihood ratio defined in section 2 can be used to obtain a goodness of fit

after the maximum likelihood fitting is done. In order to evaluate the likelihood

ratio, one needs to evaluate the theory likelihood and the data likelihood for

each value of ci. For the binned histogram, we make the approximation of

assuming that both these quantities are constant for all values of ci in a given

bin and evaluating each at the bin center. Let there be nb bins and let the kth

bin contain nk entries.

4.1 The multinomial distribution

The probability of obtaining the histogram is given by the multinomial distri-

bution

P (histogram) =
n!∏k=nb

k=1 nk!

k=nb∏
k=1

P (ck|s)nk (17)

k=nb∑
k=1

nk = n (18)

4.2 Degeneracy of the distribution

The factor n!∏k=nb
k=1

nk!
denotes the number of ways n events can be partitioned

to form the observed histogram, which we term the degeneracy D of the his-

togram. Each of the D histograms is identical to each other and possesses the
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same goodness of fit. We can then evaluate the goodness of fit for any one of

the D degenerate histograms, the likelihood for which is given by

L =
k=nb∏
k=1

P (ck|s)nk (19)

and the likelihood ratio can be written as

LR =
k=nb∏
k=1

(
P (ck|s)

P data(ck)

)nk

(20)

The value of P (ck|s)
P data(ck))

is raised to the power nk in equation 20 results from the

fact that there are nk configurations ci in the kth bin and we are multiplying

a constant ratio (at the bin center) over nk configurations. If ∆ck is the bin

width for the kth bin, then the data likelihood can be approximated by

P data(ck) ≈
nk

n∆ck

(21)

This obeys the normalization condition

∫
P data(ck)dck ≈

k=nb∑
k=1

nk

n∆ck

∆ck = 1. (22)

The theoretical likelihood can be integrated over the bin to yield

P bin average(ck|s) =
1

∆ck

c=ck+∆ck/2∫
c=ck−∆ck/2

P (c|s)dc (23)

This obeys the normalization condition

k=nb∑
k=1

P bin average(ck|s)∆ck = 1 (24)

Then the likelihood ratio can be written

LR =
k=nb∏
k=1

(
n∆ckP

bin average(ck|s)
nk

)nk

≡
k=nb∏
k=1

(
Tk

nk

)nk

(25)
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where Tk ≡ n∆ckP
bin average(ck|s) is the theoretically expected number of

events in the kth bin obeying the normalization condition
∑

k Tk = n, as per

equation 24. This likelihood ratio may be used to obtain a maximum likeli-

hood fit as well as to obtain a goodness of fit. Note that the likelihood ratio

is well-behaved even for empty bins where nk = 0, since nnk
k is unity for such

cases.

Note that the negative log-likelihood ratio NLLR resulting from equation 25

yields

NLLR =
k=nb∑
k=1

nk loge (
nk

Tk

) (26)

which is the same result as derived by Baker and Cousins [4] for the multino-

mial case where normalization is preserved between theory and experiment.

We have derived the result using very different arguments (than Baker and

Cousins) for the denominator of the likelihood ratio, namely it is the value of

the data pdf at the bin center as a result of the general theory developed here.

If we are reluctant to work out (for reasons of computing speed) the integral

in equation 23 for each bin at each step of the fitting process, then we can

approximate it by the bin center values

P bin average(ck|s) ≈
P (ck|s)∑

k P (ck|s) ∆ck

(27)

This then obeys the normalization equation 24 and the expression in equa-

tion 26 for NLLR can be used generally.
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4.3 To Show that the Binned Negative Log-Likelihood Ratio Approaches a χ2

Distribution for Large n

Let the difference between nk, the observed number of events and Tk the

theoretical number of events be denoted by λk = nk −Tk. Then
∑

k λk = 0, by

virtue of the normalization conditions. Then the binned negative log likelihood

ratio NLLR can be written

NLLR = −loge LR = −
k=nb∑
k=1

nk loge

(
1 − λk

nk

)
(28)

This can be expanded in powers of λk/nk as

NLLR = −loge LR =
k=nb∑
k=1

nk

(
λk

nk

+
1

2
(
λk

nk

)2 +
1

3
(
λk

nk

)3 +
1

4
(
λk

nk

)4 · · ·
)
(29)

=
k=nb∑
k=1

1

2
(
λ2

k

nk

) +
1

3
(
λ3

k

n2
k

) +
1

4
(
λ4

k

n3
k

) · · ·(30)

As n → ∞, the individual bin contents become normally distributed about

their expected value Tk with variance σ2
k = nk(1 − nk/n) ≈ nk for nk << n.

This is true for all cases (named the null hypothesis) where the data and theory

fit each other. Then we can write χ2
k = λk/nk and

NLLR =
k=nb∑
k=1

1

2
χ2

k +
1

3

λ3
k

σ4
k

+
1

4

λ4
k

σ6
k

· · · (31)

For large n, λk ≈ √
nk and the higher order terms may be neglected yielding

NLLR →
k=nb∑
k=1

1

2
χ2

k when n → ∞ (32)
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This is an example of the likelihood ratio theorem [5]. The expected value of

the NLLR can then be written

E(NLLR) =
k=nb∑
k=1

1

2
E(χ2

k) +
1

3

µ3

σ4
k

+
1

4

µ4

σ6
k

+
1

5

µ5

σ8
k

+
1

6

µ6

σ10
k

· · · (33)

where µ3, µ4, · · · are the 3rd, 4th · · · moments of the normal distribution about

the mean. Since the normal distribution is symmetric about the mean, all the

odd moments (µ3, µ5 · · ·) are zero. The even moments of the normal distribu-

tion (for integer l) are given by the formula

µ2l = 1.3.5 · · · (2l − 1)σ2l (34)

This yields

E(NLLR) =
k=nb∑
k=1

1

2
E(χ2

k) +
3

4

σ4
k

σ6
k

+
15

6

σ8
k

σ10
k

· · · (35)

All the remaining terms tend to zero as 1/nk(= 1/σ2
k) as nk → ∞ leading to

E(NLLR) =
k=nb∑
k=1

1

2
E(χ2

k) =
nb

2
(36)

E(LR) = exp(−nb/2) (37)

The number of degrees of freedom for NLLR would be nb − 1, due to the

normalization condition
∑

k nk = n.

4.4 Normalizing theory and experiment and the problem of Goodness of fit

for the Poisson distribution

As we have pointed out, maximum likelihood fitting only fits the shape of the

theoretical distribution to the experimental data. This is due to the normal-
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ization condition of equation 1. However, if we employ a binomial distribution

and define the first bin as containing the number of observed events n with the-

oretical expectation of nt events, and the second bin to contain the number of

unobserved events in N tries, then one can employ the formula in equation 25

with nb = 2 to obtain the likelihood ratio.

LR =
(

nt

n

)n (
N − nt

N − n

)N−n

=
(

nt

n

)n
(

1 − nt/N

1 − n/N

)N−n

(38)

We now take the Poissonian limit of N → ∞ with nt and n finite and the

above likelihood ratio becomes

LR = e−(nt−n)
(

nt

n

)n

(39)

where we have employed the relations (N − n) → N and (1 − x/N)N → e−x

as N → ∞.

Equation 39 provides the goodness of fit likelihood ratio for all Poissonian

problems where nt events are expected and n are observed. We can now mul-

tiply this Poissonian LR with equation 25 to produce the likelihood ratio for

a general binned likelihood problem where the normalization for theory and

experiment vary.

LR = e−(nt−n)
(

nt

n

)n k=nb∏
k=1

(
Tk

nk

)nk

= e−(nt−n)
k=nb∏
k=1

(
T ′

k

nk

)nk

(40)

where we have defined T ′
k = ntTk/n and

∑
T ′

k = nt. With this redefinition, we

obtain the NLLR for the multinomial with theoretical normalization differing

from the experimental one as

NLLR =
k=nb∑
k=1

T ′
k − nk + nk loge(

nk

T ′
k

) (41)
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This is same as the “Poissonian result” of Baker and Cousins [4] again derived

using very different arguments for the denominator of the likelihood ratio.

4.5 The Gaussian limit of the binomial

The Poissonian result is useful when nt and n are relatively small numbers

(<≈ 25). When we have larger number of events, then the Gaussian approxi-

mation is more relevant. We have already shown that (equation 30) that in a

multinomial, the negative log likelihood ratio can be approximated by

NLLR =
k=nb∑
k=1

1

2

(
λ2

k

nk

)
(42)

We apply this to the binomial with nb = 2, n1 = n, and n2 = N − n and

λ1 = −λ2 = n − nt. Then

NLLR =
λ2

2

2

(
1

n1

+
1

n2

)
=

λ2
2

2

(
1

(1 − n/N)(n/N)N

)
(43)

≈ λ2
2

2

(
1

Npq

)
=

(n − nt)
2

2σ2
(44)

where p = nt/N ≈ n/N is the probability of an event appearing in the first

bin and q = 1 − p and σ2 = Npq is the variance of the bin contents of

the first bin. We now let N → ∞, n → ∞ and N >> n. In this case,

the variance can be approximated by n and we have the Gaussian case with

NLLR = (n−nt)
2/2n). This NLLR can be added to the one resulting from

the maximum likelihood shape fitting to get an overall goodness of fit.

We must emphasize once again that the method of maximum likelihood always

fits theoretical shapes to experimental data. We have been able to circumvent

this restriction by using the device of the binomial distribution where the
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observed events n are in the first bin and the total number of events in the

distribution N refer to the “number of tries” and the second bin consists of the

N−n events that failed to appear in the experiment. The binomial distribution

is special in this regard since once we specify the properties of the first bin,

the second bin is completely specified and anti-correlated with the first bin.

The number of tries is unknown, but we set it to infinity in two different limits

as discussed resulting in the Poisson and the Gaussian likelihood ratios.

4.6 To show that χ2 is also the negative logarithm of a likelihood ratio

The most commonly used method for goodness of fit is the χ2 test of Karl

Pearson, which is used even when the quantities being fitted are not events

but measurements with error bars. We show here that the χ2 measure is also

twice the negative logarithm of a Gaussian likelihood ratio rather than the

negative logarithm of a Gaussian likelihood, as is the popular misconception.

Consider a binned histogram where the contents in the kth bin is noted by

ck and the theoretical expectation of this bin is sk. The standard error of the

observed variable ck is known to be σk. Then, one can write

P (ck|sk) =
1√

2πσk

exp

(
−(ck − sk)

2

2σ2
k

)
=

1√
2πσk

exp

(
−χ2

k

2

)
(45)

This leads to

− loge (P (ck|sk)) =
χ2

k

2
+ loge(

√
2πσk) (46)

From the above expression, people are mistakenly led to conclude that χ2 is

equivalent to twice the negative log-likelihood. This ignores the term loge(
√

2πσk)

in the above equation, which varies from bin to bin. In order to work out the
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likelihood ratio, we need to estimate the data density P (ck) at each measure-

ment. The data points are distributed as a Gaussian with standard deviation

σk. The best estimate of the mean of the Gaussian from the data alone is ck.

This leads to

P (ck) =
1√

2πσk

exp

(
−(ck − ck)

2

2σ2
k

)
=

1√
2πσk

(47)

yielding the likelihood ratio

LR
k =

P (ck|sk)

P (ck)
= exp

(
−(sk − ck)

2

2σ2
k

)
= exp(−χ2

k

2
) (48)

The overall likelihood ratio is given by

LR =
k=nb∏
k=1

Lk
R (49)

leading to

χ2 = 2 loge (LR) =
k=nb∑
k=1

χ2
k (50)

i.e. χ2 is equal to twice the negative log-likelihood ratio and not the negative

log-likelihood!.

5 Unbinned Goodness of Fit

Very often the data are not plentiful enough to bin adequately and it is more

efficient to perform an unbinned likelihood fit. Presently, a goodness of fit

method does not exist for unbinned likelihood fits. Using the formalism de-

veloped above, we present a solution. After the unbinned likelihood fit is per-

formed by maximizing the likelihood in equation 2 one needs to work out
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the data likelihood P data(�cn) in order to evaluate the likelihood ratio and the

goodness of fit. We employ the technique of Probability Density Estimators

(PDE ′s), also known as Kernel Density Estimators [2] (KDE ′s) to do this.

The pdf P data(c) is approximated by

P data(c) ≈ PDE(c) =
1

n

i=n∑
i=1

G(c − ci) (51)

where a Kernel function G(c − ci) is centered around each data point ci, is so

defined that it normalizes to unity. The choice of the Kernel function can vary

depending on the problem. A popular kernel is the Gaussian defined in the

multi-dimensional case as

G(c) =
1

(
√

2πh)d
√

(det(E))
exp(

−Hαβcαcβ

2h2
) (52)

where E is the error matrix of the data defined as

Eα,β =< cαcβ > − < cα >< cβ > (53)

and the <> implies average over the n events, and d is the number of dimen-

sions. The Hessian matrix H is defined as the inverse of E and the repeated

indices imply summing over. The parameter h is a “smoothing parameter”,

which has[7] a suggested optimal value h ∝ n−1/(d+4), that satisfies the asymp-

totic condition

G∞(c − ci) ≡ lim
n→∞

G(c − ci) = δ(c − ci) (54)

The parameter h will depend on the local number density and will have to be

adjusted as a function of the local density to obtain good representation of the

data by the PDE. Our proposal for the goodness of fit in unbinned likelihood
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fits is thus the likelihood ratio

LR =
P (�cn|s)

P data(�cn)
≈ P (�cn|s)

P PDE(�cn)
(55)

evaluated at the maximum likelihood point s∗.

6 An illustrative example

We consider a simple one-dimensional case where the data is an exponential

distribution, say decay times of a radioactive isotope. The theoretical predic-

tion is given by

P (c|s) =
1

s
exp(−c

s
) (56)

We have chosen an exponential with s = 1.0 for this example. The Gaussian

Kernel for the PDE would be given by

G(c) =
1

(
√

2πσh)
exp(− c2

2σ2h2
) (57)

where the variance σ of the exponential is numerically equal to s. To be-

gin with, we chose a constant value for the smoothing parameter, which for

1000 events generated is calculated to be 0.125. Figure 2 shows the generated

events, the theoretical curve P (c|s) and the PDE curve P (c) normalized to

the number of events. The PDE fails to reproduce the data near the origin

due to the boundary effect, whereby the Gaussian probabilities for events close

to the origin spill over to negative values of c. This lost probability would be

compensated by events on the exponential distribution with negative c if they

existed. In our case, this presents a drawback for the PDE method, which we

22



Fig. 2. Figure shows the histogram (with errors) of generated events. Superimposed

is the theoretical curve P (c|s) and the PDE estimator (solid) histogram with no

errors.

will remedy later in the paper using PDE definitions on the hypercube and

periodic boundary conditions. For the time being, we will confine our example

to values of c > 1.0 to avoid the boundary effect.

In order to test the goodness of fit capabilities of the likelihood ratio LR,

we superimpose a Gaussian on the exponential and try and fit the data by a

simple exponential. Figure 3 shows the “data” with 1000 events generated as
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an exponential in the fiducial range 1.0 < c < 5.0. Superimposed on it is a

Gaussian of 500 events. More events in the exponential are generated in the

interval 0.0 < c < 1.0 to avoid the boundary effect at the fiducial boundary at

c=1.0. Since the number density varies significantly, we have had to introduce

a method of iteratively determining the smoothing factor as a function of

c as described in [6]. With this modification in the PDE, one gets a good

description of the behavior of the data by the PDE as shown in Figure 3.

We now vary the number of events in the Gaussian and obtain the value of

the negative log likelihood ratio NLLR as a function of the strength of the

Gaussian. Table 1 summarizes the results. The number of standard deviations

the unbinned likelihood fit is from what is expected is determined empirically

by plotting the value of NLLR for a large number of fits where no Gaussian is

superimposed (i.e. the null hypothesis) and determining the mean and RMS

of this distribution and using these to estimate the number of σ’s the observed

NLLR is from the null case. Table 1 also gives the results of a binned fit on the

same “data”. It can be seen that the unbinned fit gives a 3σ discrimination

when the number of Gaussian events is 85, where as the binned fit gives a

χ2/ndf of 42/39 for the same case.

Figure 4 shows the variation of -log P (�cn|s) and -log P PDE(�cn) for an ensemble

of 500 experiments each with the number of events n = 1000 in the exponential

and no events in the Gaussian (null hypothesis). It can be seen that -log

P (�cn|s) and -log P PDE(�cn) are correlated with each other and the difference

between the two (-log NLLR) is a much narrower distribution than either

and provides the goodness of fit discrimination.
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Fig. 3. Figure shows the histogram (with errors) of 1000 events in the fiducial

interval 1.0 < c < 5.0 generated as an exponential with decay constant s=1.0 with

a superimposed Gaussian of 500 events centered at c=2.0 and width=0.2. The PDE

estimator is the (solid) histogram with no errors.

6.1 Improving the PDE

The PDE technique we have used so far suffers from two drawbacks; firstly,

the smoothing parameter has to be iteratively adjusted significantly over the

full range of the variable c, since the distribution P (c|s) changes significantly

over that range; and secondly, there are boundary effects at c=0 as shown in
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Table 1

Goodness of fit results from unbinned likelihood and binned likelihood fits for various

data samples. The negative values for the number of standard deviations in some

of the examples is due to statistical fluctuation.

Number of Unbinned fit Unbinned fit Binned fit χ2

Gaussian events NLLR Nσ 39 d.o.f.

500 189. 103 304

250 58.6 31 125

100 11.6 4.9 48

85 8.2 3.0 42

75 6.3 1.9 38

50 2.55 -0.14 30

0 0.44 -1.33 24

figure 2. Both these flaws are remedied if we define the PDE in hypercube

space. After we find the maximum likelihood point s∗, for which the PDE

is not needed, we transform the variable c → c′, such that the distribution

P (c′|s∗) is flat and 0 < c′ < 1. The hypercube transformation can be made

even if c is multi-dimensional by initially going to a set of variables that are

uncorrelated and then making the hypercube transformation. The transfor-

mation can be such that any interval in c space maps on to the interval (0, 1)

in hypercube space.
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Fig. 4. (a) shows the distribution of the negative log-likelihood -loge(P (�cn|s)) for

an ensemble of experiments where data and experiment are expected to fit. (b)

Shows the negative log PDE likelihood -loge(P (�cn)) for the same data (c) Shows

the correlation between the two and (d) Shows the negative log-likelihood ratio

NLLR that is obtained by subtracting (b) from (a) on an event by event basis.

6.2 Periodic Boundary Conditions

We solve the boundary problem by imposing periodicity in the hypercube.

In the one dimensional case, we imagine three “hypercubes”, each identical

to the other on the real axis in the intervals (−1, 0), (0, 1) and (1, 2). The
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hypercube of interest is the one in the interval (0, 1). When the probability

from an event kernel leaks outside the boundary (0, 1), we continue the kernel

to the next hypercube. Since the hypercubes are identical, this implies the

kernel re-appearing in the middle hypercube but from the opposite boundary.

Put mathematically, the kernel is defined such that

G(c′ − c′i) = G(c′ − c′i − 1); c′ > 1 (58)

G(c′ − c′i) = G(c′ − c′i + 1); c′ < 0 (59)

Although a Gaussian Kernel will work on the hypercube, the natural kernel

to use considering the shape of the distribution in hypercube space (it is flat

for a good fit), would be the “boxcar function” G(c′).

G(c′) =
1

h
; |c′| <

h

2
(60)

G(c′) = 0; |c′| >
h

2
(61)

This kernel would be subject to the periodic boundary conditions given above,

which further ensure that every configuration in hypercube space is treated

exactly as every other configuration irrespective of its co-ordinate. The pa-

rameter h is a smoothing parameter which needs to be chosen with some care.

However, since the theory distribution is flat in hypercube space, the smooth-

ing parameter may not need to be iteratively determined over hypercube space

to the extent that data distribution is similar to the theory distribution. Even

if iteration is used, the variation in h in hypercube space is likely to be much

smaller.

Figure 5 shows the distribution of the NLLR for the null hypothesis for

an ensemble of 500 experiments each with 1000 events as a function of the

smoothing factor h. It can be seen that the distribution narrows considerably
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Fig. 5. The distribution of the negative log likelihood ratio NLLR for the null

hypothesis for an ensemble of 500 experiments each with 1000 events, as a function

of the smoothing factor h=0.1, 0.2 and 0.3

as the smoothing factor increases. We choose an operating value of 0.2 for h

and study the dependence of the NLLR as a function of the number of events

ranging from 100 to 1000 events, as shown in figure 6. The dependence on the

number of events is seen to be weak, indicating good behavior. The PDE thus

arrived computed with h=0.2 can be transformed from the hypercube space

to c space and will reproduce data smoothly and with no edge effects. We note

that it is also easier to arrive at an analytic theory of NLLR with the choice
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of this simple kernel.

Fig. 6. The distribution of the negative log likelihood ratio NLLR for the null hy-

pothesis for an ensemble of 500 experiments each with the smoothing factor h=0.2,

as a function of the number of events

7 The distribution of the goodness of fit variable

Of all the goodness of fit variables we have studied above, for both binned

and unbinned likelihood fits, the χ2 variable is the most studied and has an
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analytic theory associated with its distribution. This is used to set a p-value

for the goodness of fit, defined as the probability to exceed the observed value

χ2 based on its analytic distribution. In the absence of an analytic theory,

it is possible to use Monte Carlo methods to obtain the distribution of the

goodness of fit variable for the hypothesis being tested and to numerically

obtain the p-value.

8 Calculation of fitted errors

After the fitting is done and the goodness of fit is evaluated, one needs to

work out the errors on the fitted quantities. One needs to calculate the poste-

rior density P (s|�cn), which carries information not only about the maximum

likelihood point s∗, from a single experiment, but how such a measurement is

likely to fluctuate if we repeat the experiment.

8.1 The concept of the pdf of a fixed parameter

Before we begin the error calculation, we would like to define precisely a few

concepts. The theoretical parameter s is a fixed but unknown constant. What

do we mean by its probability density function? We give the following oper-

ational definition. First, determine the maximum likelihood value s∗ from a

single dataset �cn. Repeat this procedure for an ensemble N of such datasets.

We define Pn(s) as the probability density function of the parameter s, the dis-

tribution of s∗ that we would obtain from such an infinite ensemble (N → ∞)

of datasets. We employ the subscript n to note the expected dependence of

this pdf on the number of elements n in each of the datasets in the ensem-
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ble. For instance, in the illustrative example of section 11, with individual

measurement error σ, we expect Pn(s) to be a Gaussian of width σ/
√

n.

Let us note that we could also denote the pdf as Pn(s∗) , but since, whenever

we talk of a distribution of s, we mean a distribution of s∗, we employ the

notation Pn(s).

8.2 The true value of the parameter s

The true value sT of the parameter s is defined to be that value of s at which

the maximum of the pdf Pn(s) occurs. Let us remember that Pn(s) has an

infinite number of similar datasets �cn contributing to it and hence this is just a

statement of the experiments being unbiased. Let us note that in the Gaussian

illustrative example of section 11, Pn(sT ), the value of the pdf at the true value

sT is equal to
√

n√
2πσ

which goes to ∞ as n → ∞.

8.3 The unknowability of Pn(s)

Since the true value of s can never be determined to infinite precision, and the

true value is the abscissa for which the pdf Pn(s) is the maximum, it follows

that the function Pn(s) is unknowable. We cannot associate an abscissa to the

function Pn(s) and hence the function cannot be “anchored” to the s axis. We

thus call this function the “unknown concomitant”, to distinguish it from a

Bayesian prior.
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8.4 The posterior density P (s|�cn)

In order to determine the error on the fitted parameter s, we need to de-

termine the posterior density P (s|�cn). The maximum likelihood fit yields the

maximum likelihood value s∗ given �cn. We postulate that there is additional

information in a single dataset �cn to yield an estimate of the distribution of

s∗ from an ensemble of such datasets. That information is expressed in the

posterior density P (s|�cn).

We would like to determine this function P (s|�cn) using Bayes’ theorem. Since

Bayes’ theorem is central to the argument, we give a simple and intuitively

compelling derivation of it for two continuous variables c, s.

8.5 Derivation of Bayes’ theorem equations

Consider a joint probability distribution P (s, c) in variables s, c. For the sake

of simplicity, we will take both s and c to be one-dimensional. The arguments

being made are general enough to easily change them into multi-dimensional

variables. Figure 7 shows geometrically the two dimensional space of s and c.

We plot s as the ordinate and c as the abscissa. At this stage s and c are two

general variables. Then,

∫ ∫
P (s, c)dsdc = 1 (62)

We define the single variable probabilities P (c) and P (s) as

P (c) =
∫

P (s, c)ds (63)

P (s) =
∫

P (s, c)dc (64)
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P (c) is the probability density of c irrespective of the value of s and P (s)

is the probability density of s irrespective of the value of c. It follows from

equation 62 that

∫
P (s)ds = 1 (65)

and

∫
P (c)dc = 1 (66)

Fig. 7. Joint probability distribution in the variables s, c. Conditional probabilities

are computed along the slices AB( s=constant) and CD(c= constant).

We define a conditional probability P (c|s) as the probability of observing c

given s. It is thus, the joint probability P (s, c) along the slice AB (s=constant)
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in figure 7, appropriately normalized to unity. i.e,

P (c|s) =
P (s, c)∫
P (s, c)dc

(67)

where the denominator in the above equation ensures that
∫

P (c|s)dc = 1.

Therefore, (using equation 64)

P (c|s) =
P (s, c)

P (s)
(68)

By symmetrical arguments (integrations along the slice CD), we show that

the conditional probability P (s|c) is given by

P (s|c) =
P (s, c)

P (c)
(69)

leading to the joint probability equation

P (s, c) = P (c|s)P (s) = P (s|c)P (c) (70)

which is sometimes written in a more familiar form known as Bayes’ theo-

rem [8] as

P (s|c) =
P (c|s)P (s)

P (c)
(71)

It is a general theorem in statistics, which we have derived using intuitive

geometrically explicit arguments. By substituting the expression for P (s, c) in

equation 68 in equation 63 we get the equation

P (c) =
∫

P (c|s)P (s)ds (72)
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and by substituting the expression for P (s, c) in equation 69 in equation 64

we get the equation

P (s) =
∫

P (s|c)P (c)dc (73)

These complete the Bayes’ theorem equations. Note also that the joint prob-

ability equation 70 can be written in a form a likelihood ratio LR

LR =
P (s|c)
P (s)

=
P (c|s)
P (c)

(74)

The quantity LR equation 74 is invariant under change of variables c → c′

and s → s′, since the Jacobian of the transformation |∂c′

∂c
| divides out in the

numerator and the denominator for the right hand side of the equation 74 for

the ratio of probability densities in P (c|s)
P (c)

. Similarly the ratio is invariant under

the transformation variable s in the LHS of the equation. These invariances

are essential in the use of the ratio LR as a goodness-of-fit variable.

We can then extend the derivation given above to derive Bayes’ theorem equa-

tions for the dataset �cn.

P (s, �cn) = P (�cn|s)Pn(s) = P (s|�cn)P data(�cn) (75)

P data(�cn) =
∫

P (�cn|s)Pn(s)ds (76)

Pn(s) =
∫

P (s|�cn)P data(�cn)d�cn (77)

Let us note that the above derivation of Bayes’ theorem treats the variables

c and s symmetrically. P (c) and P (s) are projections of the joint probability

P (s, c) on the c and s axes respectively. Neither P (c) nor P (s) is a prior in

the Bayesian sense.
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8.6 Determination of the Posterior Density P (s|�cn)

The joint probability density P (s, �cn) of the parameter s and the data �cn is

given by

P data(s, �cn) = P (s|�cn)P data(�cn) (78)

where we use the superscript data to distinguish the joint probability P data(s, �cn)

as having come from using the data pdf . If we now integrate the above equa-

tion over all possible datasets �cn, we get the expression for (using equation 77)

Pn(s).

Pn(s) =
∫

P data(s, �cn)d�cn =
∫

P (s|�cn)P data(�cn)d�cn (79)

Equation 79 states that in order to obtain the pdf of the parameter s, one

needs to add together the conditional probabilities P (s|�cn) over an ensemble

of events, each such distribution weighted by the “data likelihood” P data(�cn).

At this stage of the discussion, the function P data(s|�cn) is unknown. However,

it is important to note that equation 79 enables us to write down an expression

for the pdf of s, given the posterior density P (s|�cn) and the key concept of

the “data likelihood” P data(�cn) we have introduced, motivated by goodness of

fit considerations.

If the ensemble consists of N elements denoted by the index k, k = 1, N , then

as N → ∞,

dN

N
→ P data(�cn)d�cn (80)
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The equation 79 can be written

Pn(s) =
∫

P (s|�cn)P data(�cn)d�cn =
∫

P (s|�cn)
dN

N
≈ 1

N

k=N∑
k=1

P (s|�cn) (81)

i.e.Pn(s) is the ensemble average of the posterior densities P (s|�cn). Equation 81

highlights the difference between our theory and standard Bayesian theory. In

Bayesian statistics,the data likelihood is defined as [9]

PBayesian(�cn) =
∫

P (s)P (�cn|s)ds (82)

since

P (s|�cn) =
P (�cn|s)P (s)

PBayesian(�cn)
=

P (�cn|s)P (s)∫
P (s)P (�cn|s)ds

(83)

where P(s) is the Bayesian prior. i.e. the Bayesian data likelihood is a purely

theoretical quantity and is handled as an uninteresting normalization constant.

As a result, Bayesian statistics is devoid of the concept of goodness of fit. When

Bayesians use equation 79, they will obtain the Bayesian prior, which has no

n dependence, since

P (s) =
∫

(P (s|�cn)PBayesian(�cn)d�cn (84)

Thus, if we restore goodness of fit using the data likelihood as derived from

data, the Bayes theorem equations are incompatible with a Bayesian prior.

8.7 The error bootstrap

We now need to compute the function P (s|�cn). We employ Bayes’ theorem to

do this. The error on the fitted parameter s∗ will be related to the width of
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the posterior density P (s|�cn) that we are trying to compute. It is also related

to our ignorance of the value of sT and our inability to anchor the distribution

Pn(s). At this stage, we have worked out LR(s) as a function of s and have

evaluated the maximum likelihood value s∗ of s. We can choose an arbitrary

value of s and evaluate the goodness of fit at that value using the likelihood

ratio. When we do this, we are in fact hypothesizing that sT , the true value,

is at this value of s. The function LR(s) then gives us a way of evaluating the

goodness of fit of the hypothesis as we change s. Let us now take an arbitrary

value of s and hypothesize that that is the true value. Then, consistent with

our hypothesis, we must insist that the distribution Pn(s) is moved so that

the maximum value of the distribution (i.e. sT ) is at the current value of s.

Then the theoretical estimate for the joint probability P theory(s, �cn) is given

by the product of the probability density of the pdf of s at the true value of

s, namely Pn(sT ), and the theoretical likelihood P (cn|s) evaluated at the true

value, which by our hypothesis is s.

P theor(s, �cn) = P theor(�cn|s)Pn(sT ) (85)

The joint probability P (s, �cn) is a joint distribution of the theoretical param-

eter s and data �cn. The two ways of evaluating this (from the theoretical

end and the data end) must yield the same result, for consistency. This is

equivalent to equating P data(s, �cn) and P theor(s, �cn). This gives the equation

P (s|�cn)P data(�cn) = P theor(�cn|s)Pn(sT ) (86)

which is a form of Bayes’ theorem, but with two pdf ′s (theory and data).
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Rearranging equation 86, one gets

P (s|�cn) = LR(s)Pn(sT ) =
P theor(�cn|s)
P data(�cn)

Pn(sT ) (87)

To reiterate, when one varies s in equation 87, one makes the hypothesis that

s = sT . As one changes s, a new hypothesis is being tested that is mutually

exclusive from the previous one, since the true value can only be at one loca-

tion. So as one changes s, one is free to move the distribution Pn(s) so that sT

is at the value of s being tested. This implies that Pn(sT ) does not change as

one changes s and is a constant wrt s, which we can now write as αn. Figure 8

illustrates these points graphically. Thus Pn(sT ) in our equations is a number,

not a function. We have thus “bootstrapped” the error. On the one hand,

P (s|�cn) gives us an estimate of the spread in the measurements of s∗ from

an ensemble of datasets �cn, based on one such data set. From the theoretical

end, the error in s∗ is expressed in the uncertainty on where to put sT . We

have connected these two uncertainties using Bayes’ theorem and hypothesis

testing. We can now solve for P (s|�cn) as shown below.

8.8 New form of equations

Equation 87 can now be re-written

P (s|�cn) =
P (�cn|s)αn

P data(�cn)
(88)

Since P (s|�cn) must normalize to unity, one gets for αn,

αn =
P data(�cn)∫
P (�cn|s)ds

=
1∫ LR(s) ds

(89)
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Fig. 8. Comparison of the usage of Bayesian priors with the new method. In the

upper figure, illustrating the Bayesian method, an unknown distribution is guessed

at by the user based on “degrees of belief” and the value of the Bayesian prior

changes as the variable s changes. In the lower figure, an “unknown concomitant”

distribution is used whose shape depends on the statistics. In the case of no bias, this

distribution peaks at the true value of s. As we change s, we change our hypothesis

as to where the true value of s lies, and the distribution shifts with s as explained

in the text. The value of the distribution at the true value is thus independent of s.

We have thus determined αn, the value of the “unknown concomitant” at

the true value sT using our data set cn. This is our measurement of αn and
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different datasets will give different values of αn, in other words αn will have

a sampling distribution with an expected value and standard deviation.

Note that it is only possible to write down an expression for αn dimensionally

when a likelihood ratio LR is available. This then leads to

P (s|�cn) =
LR∫ LR ds

=
P (�cn|s)∫
P (�cn|s)ds

(90)

The last equality in equation 90 is the same expression that “frequentists” use

for calculating their errors after fitting, namely the likelihood curve normalized

to unity gives the parameter errors. If the likelihood curve is Gaussian shaped,

then this justifies a change of negative log-likelihood of 1
2

from the optimum

point to get the 1σ errors. Even if it is not Gaussian, as we show in section

(10), we may use the expression for P (s|�cn) as a pdf of the parameter s to

evaluate the errors.

Note also that the expression for P (s|�cn) in equation 90 is invariant under

the co-ordinate transformation c → c′(c), since the Jacobian cancels in the

numerator and denominator.

The normalization condition (using equation 76)

P data(�cn) =
∫

P (s, �cn)ds =
∫

P (cn|s)Pn(sT )ds (91)

is obeyed by our solution, since

∫
P (�cn|s)Pn(sT ) ds =

∫
αnP (�cn|s) ds ≡ P data(�cn) (92)

The expression
∫

αnP (�cn|s) ds in the above equation may be thought of as

being due to an “unknown concomitant” whose peak position is distributed
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uniformly in s space. The likelihoods of the theoretical prediction P (�cn|s)

contribute with equal probability each with a weight αn, to sum up to form

the data likelihood P data(�cn). i.e. the data, due to its statistical inaccuracy

will entertain a range of theoretical parameters. However, equation 92 does

not give us any further information, since it is obeyed identically.

8.9 The dependence of αn on n

For binned likelihood fitting, as n → ∞, the likelihood ratio at s = sT will

tend to exp(−nb/2) where nb is denotes the number of bins (see equation 37).

We do not currently have an analytic theory for unbinned likelihood fitting.

However, we can perhaps assume that the limit of the binned likelihood ratio

approaches that of the unbinned likelihood ratio as nb → ∞ and n → ∞.

In either case then LR(sT ) approaches a finite number (exp(−nb/2) or 0).

However, P (s|�cn) → δ(s − sT ) as n → ∞. This must imply that αn → ∞

in this limit, implying a dependence on n for Pn(s). This is another way

of illustrating the difference between Pn(s) and the Bayesian prior, which is

supposed to be a constant function, independent of n.

9 Combining Results of Experiments

Each experiment should publish a likelihood curve for its fit as well as a number

for the data likelihood P data(�cn). Combining the results of two experiments

with m and n experiments each, involves multiplying the likelihood ratios.

LR m+n(s) = LR m(s) × LR n(s) =
P ( �cm|s)

P data( �cm)
× P (�cn|s)

P data(�cn)
(93)
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Posterior densities and goodness of fit can be deduced from the combined

likelihood ratio.

10 Interpreting the results of one experiment

After performing a single experiment with n events, we now can calculate

P (s|�cn), using equation 90. Equation 79 gives the prescription for arriving

at Pn(s), given an ensemble of such experiments. The ensemble is a purely

theoretical abstraction. In practice, one only has a single dataset �cn. If there

were two such datasets, they would combined to form a single dataset �c2n. One

thus has to come to grips with interpreting the results of a single experiment.

However, we have shown (equation 81) that

Pn(s) = lim
N→∞

1

N

k=N∑
k=1

P (s|�cn) (94)

Thus given a single experiment, the unbiased estimator for Pn(s), the pdf of

s, is P (s|�cn). We can thus use P (s|�cn) as though it is the pdf of s and deduce

limits and errors from it. The proviso is of course that these limits and errors

as well as s∗ come from a single experiment of finite statistics and as such are

subject to statistical fluctuations.

11 Another Illustrative Example

We now apply the theory developed here to a practical example. The problem

is to determine the weight of an object using an apparatus whose standard

error is known to be 5 gm. The weight is a fixed constant of nature for the
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duration of the experiment. We obtain a dataset of 100 measurements, i.e.

n = 100. Then P (c|s) is a Gaussian of unknown mean s and width σ =

5 gm. We compute P (�cn|s) for the 100 events by multiplying the individual

P (ci|s) together and maximize the likelihood to determine s∗ for the dataset

using unbinned likelihoods. We then transform the measurements ci to the

hypercube space using equation 3. We use the improved PDE in hypercube

space with h = 0.2 and determine the goodness of fit and the negative log-

likelihood ratio NLLR. We repeat this for an ensemble of 1000 experiments.

Figure 9(a) shows the distribution of s∗ for this ensemble. The mean value of

s∗ over this ensemble is 49.98 gm and the RMS is 0.495 gm which is consistent

with the expected σ/
√

(100) value of 0.5 gm. Figure 9(b) shows the distri-

bution of NLLR for the 1000 members of the ensemble. Figure 9(c) shows

the likelihood ratio functions LR(s) for the first 10 fits in the ensemble. The

value of s∗ fluctuates as expected, as well as the value of LR(s∗), the negative

logarithm of which gives the NLLR. The fluctuation in s∗ for the fits in the

ensemble essentially expresses our lack of knowledge of the position of the true

value sT . The width of the likelihood distribution also contains information

on the same lack of knowledge.

We now take each function LR(s) and hypothesize that the true value is at

a given value of s and apply Bayes’ theorem as per equation 86. This set of

infinite mutually exclusive hypotheses also expresses the same ignorance of

the position of sT . Bayes’ theorem allows us to connect the two approaches

(theoretical and data) to provide a calculation the posterior density P (s|�cn)

for each member of the ensemble. These functions are shown in Figure 9(d).

The maximum likelihood value moves around with the expected spread of
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Fig. 9. (a)The distribution of s∗, the maximum likelihood value of s for a 1000

member ensemble of datasets of n = 100. (b)The goodness of fit variable NLLR

for the fits (c)The likelihood ratio LR(s) as a function of s for the first 10 members

of the ensemble (d) The function P (s|�cn) for the first 10 members of the ensemble

0.5 gm. The average standard deviation of these curves is 0.5 gm with an rms

of 0.65 E-3 gm. The average of these functions on an infinite ensemble yields

the true pdf Pn(s).
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11.1 One more iteration

In practice, if one has a dataset with n = 100 and N = 1000 similar instances

of them, the easiest way to analyze the data is to combine them all into a

dataset with n′ = Nn = 100, 000. However, we are interested in studying the

function Pn(s) which is estimated by the ensemble average of the functions

P (s|�cn). This function tells us the behavior of the distribution of the maximum

likelihood values s∗ over similar datasets each with n=100.

After we do the average and obtain our best estimate of Pn(s) on the ensemble,

we have more information (from the whole ensemble) on the position of the

true value than we possessed while evaluating P (s|�cn) for an element of the

ensemble. We should use this additional information by re-introducing it into

the Bayes’ theorem equations 75 and 76 to re-work the individual P (s|�cn).

P (s|�cn) =
P (�cn|s)Pn(s)∫
P (�cn|s)Pn(s)ds

(95)

where we approximate Pn(s) by the ensemble average. The resulting P (s|�cn)

are used to recompute the ensemble average to yield a better (iterated) esti-

mate for Pn(s) as per equation 81. Figure 10(a) shows the ensemble average

estimate of Pn(s) for n=100 and N=1000 before and after iteration. The mean

value of the un-iterated and iterated functions are the same at 49.977 gm (The

Gaussians were generated with a true value of 50 gm). The r.m.s values of the

function before and after iteration are 0.701 gm and 0.522 gm respectively.

The iterated function thus has the correct width and mean value. Figure 10(b)

shows the individual P (s|�cn) functions for two members of the ensemble before

and after iteration. The iterations pull these functions towards the true value,

since we are inputing additional information on the true value.
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Fig. 10. (a) The function Pn(s) computed on the ensemble for n=100 and N=1000.

The two iterations are shown, with the numbers (1,2) indicating the iteration num-

ber. (b) The function P (s|�cn) for two elements on the ensemble for the two iterations.

12 The distribution of s∗ and the function Pn(s)

Using Bayes’ theorem, we have shown that the function Pn(s) as estimated on

the ensemble using equation 81 yields the pdf of s∗, the maximum likelihood

values measured for each dataset on the ensemble. Here we show the same

fact another way. The functions P (s|�cn) are functions of s and depend on the

individual dataset �cn. Each dataset k in the ensemble yields two quantities
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after fitting and iteration; the maximum likelihood value s∗k and the poste-

rior density function P (s|�cn). Without loss of generality, we can express the

posterior density function as a function of s − s∗k such that

P (s|�cn) ≡ Gk(s − s∗k) (96)

Then equation 81 can be re-expressed

Pn(s) = lim
N→∞

1

N

k=N∑
k=1

Gk(s − s∗k) (97)

But this is just the PDE equation for the distribution of s∗, with the functions

Gk serving as the kernels!. They satisfy the normalization condition
∫ Gk(t)dt =

1 as required. This should be compared with equation 51 for the definition of

PDE ′s. Thus Pn(s) represents a PDE of the distribution of s∗ and will yield

the same distribution as s∗.

In the limit N → ∞, we can represent the distribution of the maximum

likelihood values s∗ on the ensemble as a continuous pdf g(s∗). In this limit,

one can write

Pn(s) =
∫

g(s∗)G(s∗, s − s∗)ds∗ = g(s) (98)

where we have used the notation G(s∗, s−s∗) to emphasize the variation of the

kernel as a function of s∗ (i.e. ensemble element). The latter half of the above

equation is an integral equation with kernel G(s∗, s− s∗) whose eigenfunction

is g(s). Figure 11(a) shows the values of s∗ histogrammed for our illustrative

example for an ensemble of N=1000 and n=100. The superimposed curve is

the iterated function Pn(s) calculated for this ensemble normalized to a 1000

element ensemble. It can be seen that the function describes the distribution
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of s∗ well. Figure 11(b) shows the iterated function Pn(s) for n = 100 and

n = 200 respectively. As expected, the n = 200 function is narrower and its

value at the maximum is larger, illustrating that αn ≡ Pn(sT ) increases with

n.

Fig. 11. (a)The distribution of s∗ (solid histogram) for an ensemble with N=1000

elements each consisting of a dataset n=100. The curve is the estimate for the

iterated function Pn(s) for this ensemble normalized to the 1000 observations. (b)

Pn(s) on the ensemble for n=100 and n=200. This illustrates that the ensemble

averaged function, depends on n, the size of the dataset. As n increases, the function

narrows and the value of the function at its maximum increases.
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13 Co-ordinate transformations s′ = s′(s)

We have shown that the posterior densities P (s|�cn) are invariant under the

co-ordinate transformations c′ = c′(c), as they should be. How do they behave

under transformations s′ = s′(s)? The function P (s|�cn) represents our estimate

using one member of the ensemble of the pdf of s. So if P (s|�cn) represents a

pdf , we would expect it to behave like a pdf , namely

P (s′|�cn) = P (s|�cn)| ∂s

∂s′
| (99)

This is how pdf ′s transform (via the Jacobian). This can be shown patently

not to be so, since P (�cn|s′) = P (�cn|s) and

P (s′|�cn) =
P (�cn|s′)∫
P (�cn|s′)ds′

= λ(�cn)P (s|�cn) (100)

where the s independent constant λ(�cn) is given by

λ(�cn) =

∫
P (�cn|s)ds∫
P (�cn|s′)ds′

(101)

i.e. the posterior densities do not transform in a way that is expected of pdf ′s.

This was perhaps a naive expectation. As we have just demonstrated, the

posterior densities serve the purpose of kernels on the ensemble, the ensemble

average of which gives the pdf Pn(s). There is no need for the kernel from a

member of the ensemble to transform to the kernel from the same member

under these transformations. The properties of the ensemble average deduced

from the individual kernels will fluctuate from kernel to kernel. Similarly, when

one analyzes in transformed variables, the same kernel will give different results

which may be thought of as being part of the fluctuation.
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The distributions of the maximum likelihoods g(s∗) however will transform as

pdf ′s, since g(s) represents the probability density of the maximum likelihood

value and s′∗ = s′(s∗). i.e.

g′(s′) = | ∂s

∂s′
|g(s) (102)

Since we have demonstrated using equation 98 that Pn(s) and g(s) are iden-

tical distributions, we can similarly assert that P ′
n(s′) and g′(s′) are identical

distributions. And due to equation 102, we conclude that

P ′
n(s′) = | ∂s

∂s′
|Pn(s) (103)

i.e the true pdf ′s on an infinite ensemble will transform correctly. The indi-

vidual kernels will not transform on to each other as pdf ′s.

14 Comparison with the Bayesian approach

In the Bayesian approach, an unknown Bayesian prior P (s) is assumed for the

distribution of the parameter s in the absence of any data. The shape of the

prior is guessed at, based on subjective criteria or using other objective pieces

of information. However, such a shape is not invariant under transformation

of variables. For example, if we assume that the prior P (s) is flat in s, then

if we analyze the problem in s2, it will not be flat in s2. This feature of the

Bayesian approach has caused controversy. Also, the notion of a pdf of the

data does not exist and P (c) is taken to be a normalization constant. As such,

no goodness of fit criteria exist. In the method outlined here, we have used

Bayes’ theorem to calculate posterior densities of the fitted parameters while
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being able to compute the goodness of fit. The formalism developed here shows

that what is conventionally thought of as a Bayesian prior distribution is in

fact a normalization constant and what Bayesians think of as a normalization

constant is in fact the pdf of the data. Table 2 outlines the major differences

between the Bayesian approach and the new one.

15 Conclusions

To conclude, we have proposed a general theory for obtaining the goodness

of fit in likelihood fits for both binned and unbinned likelihood fits. In order

to obtain a goodness of fit measure, one needs two likelihoods:- one derived

from theory and the other derived from the data alone. In order to compute

the errors on fitted quantities, posterior densities need to be worked out and

Bayes’ theorem needs to be employed. The usage of data likelihood using

data alone does away the need for the Bayesian prior which is shown to be

a number and not a distribution. This number is the value of the pdf of the

parameter, which we call the “unknown concomitant” at the true value of

the parameter. This number is calculated from a combination of data and

theory and is seen to be an irrelevant parameter. If this viewpoint is accepted,

the controversial practice of guessing distributions for the “Bayesian Prior”

can now be abandoned, as can be the terms “Bayesian” and “frequentist”.

We investigate the transformation properties of the posterior density of fitted

parameters under change of variable.
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Table 2

The key points of difference between the Bayesian method and the new method.

Item Bayesian Method New Method

Goodness Absent Now available

of fit in both binned

and unbinned fits

Data Used in evaluating Used in evaluating

theory pdf theory pdf

at data points at data points

as well as evaluating

data pdf at data points

Prior Is a distribution No prior needed.

that is guessed based One calculates a

on “degrees of belief” constant from data

Independent of data, αn = P data( �cn)∫
P ( �cn|s)ds

monolithic → ∞ as n → ∞

Posterior Depends on Prior. Independent of prior.

density same as frequentists use

P (s|�cn) P ( �cn|s)P (s)∫
P ( �cn|s)P (s) ds

P ( �cn|s)∫
P ( �cn|s) ds
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17 Appendix

17.1 An extreme goodness of fit example

In order to demonstrate the capabilities of the unbinned goodness of fit method,

we illustrate its power with the following example.

17.2 An extreme problem

We now attempt to solve a problem with three observed data points, made

extreme due to the sparsity of data. The problem is stated as follows.

“Three data points are observed [10] in three dimensional co-ordinate space

x,y,z with (x,y,z) = (0.1,0.2,0.3), (0.2,0.4,0.1), and (0.05,0.6,0.21). What is

the goodness of fit to the hypothesis that the observed number of events is

distributed according to p(x, y, z) = e−(x+y+z) ? “

17.3 Goodness of fit for the above problem

We note that the likelihood function for the problem is

L =
i=3∏
i=1

1

s
exp − ((xi + yi + zi)/s) (104)
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where we assume a maximum likelihood fit has been done and the lifetime

parameter s has been determined to be s∗ = 1 at the maximum. Since the

three co-ordinates x,y, and z are uncorrelated (as per the above likelihood

function), we can reformulate the problem as a single dimensional problem as

follows.

L =
i=9∏
i=1

1

s
exp (−ci/s) (105)

where the n=9 vector �cn = 0.1 0.2 0.3 0.2 0.4 0.1 0.05 0.6 0.21

We transform the co-ordinates to the hypercube space (s∗ = 1), with the limits

of c assumed to be 0.0 and 10.0 1 .

Figure 12 shows the transformed co-ordinates in hypercube space. We then

proceed to work out the negative log-likelihood ratio NLLR for this configura-

tion with the “smoothing parameter h” set to three different values h = 0.2, 0.3

and 0.4. We study the behavior of the NLLR for the null hypothesis (i.e. n=9

events distributed uniformly in hypercube space) for a 1000 such experiments.

We repeat this for a dataset of n = 100 as well to study the effect of the small

data sample on our goodness of fit measure. Figure 13 shows the distribution

of the NLLR for the three different values of h for a data set size n = 9.

Figure 14 shows the distribution of the NLLR for the three different values

of h for a data set size n = 100. Table 3 summarizes the observed NLLR for

our dataset as a function of h. The mean and sigma of the null hypothesis

histograms are also shown as well as the probability that the observed NLLR

is exceeded for both the n = 9 null hypothesis and an n = 100 null hypothesis.

1 Since the program expects a finite upper limit, the high value of c=10 is deemed

to be sufficiently large to be infinite for this problem.
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Fig. 12. Transformed co-ordinates in hypercube space.

The latter is run to test the sensitivity of the results to the small data sample.

17.4 Comments

The observed data is a bad fit to the model. We have managed not only

obtain a goodness of fit for the problem (made extreme by the sparsity of

data), but also to show that the method gives reliable results for a variety of

smoothing parmaters. The method is also robust with respect to the data size
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Fig. 13. The distrbution of NLLR as a function of the smoothing parameter

h = 0.2, 0.3, 0.4 for a dataset n = 9 generated to be uniform in the hypercube.

n. We see that as we increase the smoothing parameter to 0.4, we begin to

increase the chance of fitting. When h = 1.0, everything will fit. A smoothing

parameter of h = 0.2 or 0.3 gives reliable results. The probability to exceed

the observed NLLR is estimated from the histograms with 1000 experiments.

We can improve the accuracy of this by running more Monte Carlo statistics.

58



Fig. 14. The distrbution of NLLR as a function of the smoothing parameter

h = 0.2, 0.3, 0.4 for a dataset n = 100 generated to be uniform in the hypercube.
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